
Eur. Phys. J. C 1, 735–738 (1998) THE EUROPEAN
PHYSICAL JOURNAL C
c© Springer-Verlag 1998

Note on the N = 2 super Yang-Mills gauge theory
in a noncommutative differential geometry
Yoshitaka Okumura

Department of Natural Science, Chubu University, Kasugai, 487, Japan (e-mail: okum@isc.chubu.ac.jp)

Received: 19 March 1997

Abstract. The N = 2 super-Yang-Mills gauge theory is reconstructed in a non-commutative differential
geometry (NCG). Our NCG with one-form bases dxµ on the Minkowski space M4 and χ on the discrete
space Z2 is a generalization of the ordinary differential geometry on the continuous manifold. Thus, the
generalized gauge field is written as A(x, y) = Aµ(x, y)dxµ+Φ(x, y)χ where y is the argument in Z2. Φ(x, y)
corresponds to the scalar and pseudo-scalar bosons in the N = 2 super Yang-Mills gauge theory whereas
it corresponds to the Higgs field in the ordinary spontaneously broken gauge theory. Using the generalized
field strength constructed from A(x, y) we can obtain the bosonic Lagrangian of the N = 2 super Yang-
Mills gauge theory in the same way as Chamseddine first introduced the supersymmetric Lagrangian of the
N = 2 and N = 4 super Yang-Mills gauge theories within the framework of Connes’s NCG. The fermionic
sector is introduced so as to satisfy the invariance of the total Lagrangian with respect to supersymmetry.

1 Introduction

Since Connes [1] proposed the original idea concerning the
reconstruction of spontaneously broken gauge theories by
use of noncommutative differential geometry (NCG) on
the discrete space, many works [2–11] have appeared in
order to realize the unified picture of gauge and Higgs
fields as the generalized gauge field on the discrete space
M4 ×Z2. Especially, the Standard Model has successfully
reconstructed in various versions of NCG.

We have also proposed a characteristic formulation [8]–
[11] which is the generalization of the usual differential
geometry on an ordinary manifold into the discrete space
M4 ×Z

N
. In a noncommutative geometry on M4 ×Z2, the

extra differential one-form χ is introduced in addition to
the usual one-form dxµ and therefore, our formulation is
very similar to the ordinary differential geometry. Our for-
mulation includes the symmetry breaking matrix, so that
it is flexible enough to enable us to reconstruct not only
the Standard Model but the gauge theories with complex
symmetry breaking structures such as the SU(5) GUT [9]
and the SO(10) GUT [10].

On the other hand, the supersymmetric gauge theories
including the minimal supersymmetric Standard Model
(MSSM), and the supersymmetric SU(5) and SO(10)
GUTs have the many attractive features as already known.
Then, it is tempting to reconstruct supersymmetric Yang-
Mills gauge theory in NCG on the super-manifold with the
arguments xµ, θA and θ̄Ȧ multiplying the discrete space
Z2. However, this approach is somewhat difficult to be re-
alized as pointed by Chamseddine [4]. He rather took an
approach to reconstruct the supersymmetric Lagrangian
within the ordinary framework of NCG. He succeeded in

obtaining the supersymmetric Lagrangian of the N = 2
and N = 4 super Yang-Mills gauge theories [4]. In this
paper, following to Chamseddine’s idea, we try to recon-
struct the N = 2 super Yang-Mills gauge theory based
on our formulation of NCG. In second section, our NCG
scheme on the discrete space M4 × Z2 is reviewed be-
cause it has not been well-known among particle physi-
cists. In third section, we aim to construct the following
Lagrangian of the N = 2 super Yang-Mills gauge theory.

L = LB + LD, (1)

where

LB = Tr
{

−1
4
F †

µν(x)Fµν(x) +
1
2
[DµS(x)]2

+[DµP (x)]2 +
g2

2
[S(x), P (x)]2

}
, (2)

LD = Tr
{
iψ̄(x)γµDµψ(x) + ψ̄(x)

×[S(x) + iγ5P (x), ψ(x)]
}
. (3)

Here, S(x) and P (x) are scalar and pseudo-scalar fields,
and ψ(x) is a Dirac spinor, all in the adjoint representation
of the internal gauge group, and

Fµν(x) = ∂µAν(x) − ∂νAµ(x) − ig[Aµ(x), Aν(x)], (4)
DµS(x) = ∂µS(x) − ig[Aµ(x), S(x)], (5)
DµP (x) = ∂µP (x) − ig[Aµ(x), P (x)], (6)
Dµψ(x) = ∂µψ(x) − ig[Aµ(x), ψ(x)] (7)

with the super Yang-Mills gauge field Aµ(x). Fourth sec-
tion is devoted to concluding remarks.
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2 Our NCG formulation

First, let us briefly present our formulation of NCG by
modifying it so as to be applicable to the super Yang-
Mills gauge theory. The generalized gauge field A(x, y) on
the discrete space M4 × Z2 is introduced as

A(x, y) =
∑

i

a†
i (x, y)dai(x, y), (8)

where ai(x, y) is the square-matrix-valued functions. Here,
the subscript i is a variable corresponding to the extra
internal space which we can not yet identify. At this time,
we simply regard ai(x, y) as the more fundamental field to
construct gauge and Higgs fields. y is an argument in Z2
and takes the value y = + or y = −. The operator d in (8)
is the generalized exterior derivative defined as follows.

d = d+ dχ, (9)
dai(x, y) = ∂µai(x, y)dxµ, (10)
dχai(x, y) = ∂yai(x, y)χ

= [−ai(x, y)M(y) +M(y)ai(x,−y)]χ, (11)

where dxµ is ordinary one-form basis, taken to be dimen-
sionless, in Minkowski space M4, and χ is the one-form
basis, assumed to be also dimensionless, in the discrete
space Z2. The operator ∂y defined in (11) is a difference
operator accompanied by the x-independent matrix M(y)
whose hermitian conjugation is given by M(y)† = M(−y).
The introduction of M(y) is needed to assure the consis-
tent sum of matrices on the right-hand side of (11). In
order to find the explicit forms of gauge and Higgs fields
according to (8)–(11), we need the following important
algebraic rule of a noncommutative geometry:

f(x, y)χ = χf(x,−y), (12)

where f(x, y) is a field ai(x, y), gauge field, Higgs field or
fermion field defined on the discrete space. It should be
noted that (12) does not express the relation between the
matrix elements of f(x,+) and f(x,−) but insures the
consistent product between the fields expressed in differ-
ential form on the discrete space. Inserting (9)–(11) into
(8) and using (12), A(x, y) is rewritten as

A(x, y) = Aµ(x, y)dxµ + Φ(x, y)χ, (13)

where

Aµ(x, y) =
∑

i

a†
i (x, y)∂µai(x, y), (14)

Φ(x, y) =
∑

i

a†
i (x, y) (−ai(x, y)M(y)

+M(y)ai(x,−y)). (15)

Here, Aµ(x, y) and Φ(x, y) are identified with the gauge
field in the flavor symmetry and the Higgs field, respec-
tively. In order to identify Aµ(x, y) with a true gauge field,
the following conditions must be imposed.∑

i

a†
i (x, y)ai(x, y) = 1. (16)

Before constructing the gauge covariant field strength, we
address the gauge transformation of ai(x, y) which is de-
fined as

ag
i (x, y) = ai(x, y)g(x, y), (17)

where g(x, y) is the gauge function with respect to the cor-
responding flavor unitary group. We will take g(x,+) =
g(x,−) = g(x) in this article because all fields under con-
siderations in (2) and (3) belong to the adjoint represen-
tation. However, the argument y in g(x, y) is kept in equa-
tions for a while. Then, we can find from (8) and (17) the
gauge transformation of A(x, y) to be

Ag(x, y)=g−1(x, y)A(x, y)g(x, y) + g−1(x, y)dg(x, y),
(18)

where as in (9)–(11),

dg(x, y)=(d+ dχ)g(x, y) = ∂µg(x, y)dxµ + ∂yg(x, y)χ
=∂µg(x, y)dxµ

+[−g(x, y)M(y) +M(y)g(x,−y)]χ. (19)

Using (17) and (18), we can find the gauge transformations
of gauge and Higgs fields as

Ag
µ(x, y)=g−1(x, y)Aµ(x, y)g(x, y)

+g−1(x, y)∂µg(x, y), (20)

Φg(x, y)=g−1(x, y)Φ(x, y)g(x,−y)
+g−1(x, y)∂yg(x, y), (21)

Equation (21) is very similar to (20) that is the gauge
transformation of the genuine gauge field Aµ(x, y) and
therefore it strongly indicates that the Higgs field is a
kind of gauge field on the discrete space M4 × Z2. From
(19), (21) is rewritten as

Φg(x, y) +M(y) = g−1(x, y)(Φ(x, y) +M(y))g(x,−y).
(22)

Here, we define the field H(x, y) as

H(x, y) = Φ(x, y) +M(y). (23)

From (22), it seems that H(x, y) is the un-shifted Higgs
field because we assume that M(y) is invariant against
the gauge transformation. Therefore, if Φ(x, y) has a van-
ishing vacuum expectation value, M(y) is identified with
the vacuum expectation value of H(x, y). However, in this
article, we do not determine what value of the vacuum
expectation Φ(x, y) takes. Therefore, there is a possibility
that Φ(x, y) has the non-vanishing vacuum expectation
value. We must adopt this case to reconstruct the super
Yang-Mills gauge theory, as shown later.

In addition to the algebraic rules in (9)–(11) we add
one more important rule that

dχM(y) = M(y)M(−y)χ (24)

which together with (11) yields the nilpotency of dχ and
then the nilpotency of the generalized exterior derivative
d. For the proof of nilpotency of dχ, see [8]. With these
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considerations we can construct the gauge covariant field
strength as follows:

F(x, y) = dA(x, y) + A(x, y) ∧ A(x, y). (25)

From (18) and (25) we can easily find the gauge transfor-
mation of F(x, y) as

Fg(x, y) = g−1(x, y)F(x, y)g(x, y). (26)

The bosonic Lagrangian is obtained by

LB = − 1
4g2

∑
y=±

Tr < F(x, y),F(x, y) > (27)

where g is a constant relating to the coupling constant of
the flavor gauge field and Tr denotes the trace over inter-
nal symmetry matrices. In order to express the bosonic
Lagrangian let us denote the explicit expressions of the
field strength F(x, y). The algebraic rules defined in (9)–
(11), (12) and (16) yield

F(x, y)=
1
2
Fµν(x, y)dxµ ∧ dxν

+DµH(x, y)dxµ ∧ χ+ V (x, y)χ ∧ χ, (28)

where

Fµν(x, y)=∂µAν(x, y) − ∂νAµ(x, y)
+[Aµ(x, y), Aµ(x, y)], (29)

DµH(x, y)=∂µH(x, y) +Aµ(x, y)H(x, y))
−H(x, y)Aµ(x,−y), (30)

V (x, y)=H(x, y)H(x,−y) − Y (x, y). (31)

The quantity Y (x, y) in (31) is an auxiliary field and ex-
pressed as

Y (x, y) =
∑

i

a†
i (x, y)M(y)M(−y)ai(x, y), (32)

which in general may or may not depend on Φ(x, y) and/or
may be a constant field. However, in the case of the super
Yang-Mills gauge theory, Y (x, y) must be an independent
auxiliary field.

In order to obtain the explicit expression of LB in (27)
we must determine the metric structure of one-forms.

< dxµ, dxν >= gµν , gµν = diag(1,−1,−1,−1),
< χ, χ >= −1, < dxµ, χ >= 0. (33)

From (28)–(31), LB is written as

LB=−1
4
Tr

∑
y=±

1
2g2F

†
µν(x, y)Fµν(x, y)

+
1
4
Tr

∑
y=±

1
g2DµH(x, y)†DµH(x, y)

−1
4
Tr

∑
y=±

1
g2V

†(x, y)V (x, y), (34)

where the third term on the right hand side of (34) is the
potential term of Higgs particle.

3 Super Yang-Mills gauge theory

In the case of the N = 2 super Yang-Mills theory we
must assume that Aµ(x,+) = Aµ(x,−) = −igAµ(x) and
H(x,+) = H†(x,−) = gH(x). In addition, Y (x,±) are in-
dependent auxiliary fields and satisfy the condition Y (x,+)
= Y (x−) = Y (x) which implies [M(+),M(−)] = 0 as
pointed out by Chamseddine [4]. In th reconstruction of
the N = 2 super Yang-Mills gauge theory, we must con-
sider that M(y) is not necessarily vacuum expectation
value of the Higgs field H(x, y) in (23). This case is al-
lowable in our formulation. After the elimination of the
auxiliary field Y (x) owing to the equation of motion, these
assumptions yield that

LB=Tr
{

−1
4
Fµν(x)Fµν(x)

+
1
2
DµH(x)†DµH(x) − g2

8
V (x)2

}
, (35)

where

Fµν(x) = ∂µAν − ∂νAµ − ig[Aµ, Aν ], (36)
DµH(x) = ∂µH(x) − ig[Aµ, H(x)], (37)

V (x) = [H(x), H†(x)]. (38)

If H(x) = S(x) − iP (x), (35) is readily found to be
the Lagrangian of the N = 2 super Yang-Mills gauge the-
ory given in (2). The more explicit specifications of the
corresponding fields are given as follows:

Aµ(x) =
∑

a

T aAa
µ(x), (39)

H(x) =
∑

a

T a(Sa(x) − iP a(x)), (40)

where T a are matrices of internal symmetry with the or-
thogonal condition Tr(T aT b) = δab and the commutation
relation [T a, T b] = ifabcT c. Inserting (39) and (40) into
(35), we find

LB=
∑

a

{
−1

4
(F a

µν)2 +
1
2

(DµS
a)2

+
1
2

(DµP
a)2 − g2

2
(
fabcSbP c

)2
}
, (41)

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
b
ν , (42)

DµS
a = ∂µS

a + gfabcAb
µS

c. (43)

DµP
a = ∂µP

a + gfabcAb
µP

c. (44)

Let us turn to the fermion sector and briefly review
the way to construct the Dirac Lagrangian in (3). The co-
variant derivative acting on the spinor field ψ(x, y) which



738 Y. Okumura: Note on the N = 2 super Yang-Mills gauge theory in a noncommutative differential geometry

is the adjoint representation of the flavor gauge group is
defined as

Dψ(x, y) = [d + A(x, y), ψ(x, y)], (45)

which we call the covariant spinor one-form. This expres-
sion is due to the fact that ψ(x, y) belongs to the adjoint
representation of the flavour symmetry. Since the role of
dχ makes the shift Φ(x, y) → Φ(x, y)+M(y) = H(x, y) as
shown previously, we define also for fermion field

[dχ, ψ(x, y)] = [M(y), ψ(x,−y)]χ (46)

which leads (45) to

Dψ(x, y)=(∂µψ(x, y) + [Aµ(x, y), ψ(x, y)])dxµ

+[H(x, y), ψ(x,−y)]χ. (47)

In deriving (47), use has been made of (12). As ψ(x, y) is
subjected to the gauge transformation

ψg(x, y) = g−1(x)ψ(x, y)g(x), (48)

Dψ(x, y) becomes gauge covariant owing to (20), (22) and
(47):

Dψg(x, y) = g−1(x)Dψ(x, y)g(x). (49)
In addition, d + A(x, y) is Lorentz invariant, and so

Dψ(x, y) is transformed as a spinor just like ψ(x, y) against
Lorentz transformation.

In order to obtain the Dirac Lagrangian for fermion
sector, the associated spinor one-form is introduced as the
counter-part of (45) by

D̃ψ(x, y) = γµψ(x, y)dxµ − iψ(x, y)χ. (50)

With the same inner products for spinor one-forms as in
[8] that

< A(x, y)dxµ, B(x, y)dxν >= Ā(x, y)B(x, y)gµν ,

< A(x, y)χ,B(x, y)χ >= −Ā(x, y)B(x, y), (51)

and vanishing other such combinations, we can obtain the
Dirac Lagrangian

LD(x, y)=iTr < D̃ψ(x, y),Dψ(x, y) >
= Tr

{
i [ ψ̄(x, y)γµ(∂µψ(x, y) + [Aµ(x, y), ψ(x, y)]

+ ψ̄(x, y)[H(x, y), ψ(x,−y)]} , (52)

where Tr is also the trace over internal symmetry matrices.
In this article, we specify ψ(x,+) = ψ(x) and ψ(x,−) =
ψ(x). Then, the total Dirac Lagrangian is obtained by
summing (52) over y:

LD=
∑
y=±

LD(x, y),

=Tr
{
iψ̄(x)γµ(∂µψ(x) − ig[Aµ(x), ψ(x)])

+gψ̄(x)[S(x) + iγ5P (x), ψ(x)]
}
, (53)

which is apparently equal to the Dirac Lagrangian in (3)
invariant under the Lorentz and gauge transformations.
Equation (53) is written in components as

LD=iψ̄a(x)γµ(∂µψ
a(x) + gfabcAb

µ(x)ψc(x))

+igfabcψ̄a(x)(Sb(x) + iγ5P
b(x))ψc(x). (54)

4 Conclusions

We have reconstructed the N = 2 super Yang-Mills gauge
theory in (2) and (3) by use of the noncommutative geom-
etry developed by the present author. It is straightforward
to reconstruct the N = 4 super Yang-Mills gauge theory
in the same way as that in this paper. This subject was
also picked up by Morita who assumed χ ∧ χ = 0 [12]
and considered the term F 0(x) =< d,A(x, y) > + <
A(x, y),A(x, y) > instead of the potential term in (34).
Therefore, his formulation is somewhat in the different
context from that of our formulation.
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